

pyfxr - a simple synth for games

pyfxr generates tones and noises in fast Cython code, and is intended for use
in simple Python computer games and in education. It can generate:

	Highly configurable noises (the original sfxr [https://www.drpetter.se/project_sfxr.html])

	Pure tones with sine, square, saw and triangle waveforms

	Pluck sounds, like harp or guitar, using the Karplus-Strong algorithm [https://flothesof.github.io/Karplus-Strong-algorithm-Python.html]

Sounds can be played with any library that supports the buffer protocol (such
as Pygame), or saved to .wav files.

For example, this is a complete program to generate a 1s pluck sound and play
it with Pygame:

import pygame.mixer
import time
import pyfxr

pyfxr generates mono 44kHz sounds so we must set
Pygame to use this
pygame.mixer.pre_init(44100, channels=1)
pygame.mixer.init()

tone = pyfxr.pluck(duration=1.0, pitch='A4')
pygame.mixer.Sound(buffer=tone).play()

wait for the sound to finish before exiting
time.sleep(tone.duration)

Contents:

	Generating sounds
	sfxr-style sounds

	Wavetable sounds

	Pluck sounds

	Composing tools

	Using Soundbuffer objects
	With Pygame

	With Pyglet

	With sounddevice

Changes

0.3.0

	New: GUI to explore SFX parameters

	New: some parameters for SFX require positive numbers

	New: chord() for combining sounds

	New: simple_chord() for generating harmonic chords from chord names

0.2.0

	New: SFX, which manages parameters for sfx generation

	Change: jump(), explosion() etc now return SFX instances.

	New: GUI now prints code for sounds generated

	Deprecation: sfx() is now deprecated, use SFX.

	Fix: bug in handling of arp_mod parameter

0.1.0

Initial release.

Indices and tables

	Index

	Module Index

	Search Page

Generating sounds

pyfxr has 3 sound generation algorithms, described below.

sfxr-style sounds

sfxr [https://www.drpetter.se/project_sfxr.html] is a user interface for generating sounds with a wide array of
parameters. pyfxr provides a full API to generate these sounds in Python
programs.

	
class pyfxr.SFX(**kwargs)

	Build a sound effect using a set of parameters.

The list of parameters is long and the sensible ranges for the parameters
aren’t that clear. This class acts as a validator and builder for the
parameters, making it simpler to experiment with sound effects.

You can also serialise this class in several ways:

	The repr() is suitable for pasting into code.

	You can serialise it as JSON using .as_dict().

	You can pickle the class.

In any of these case the size is much smaller than the generated
SoundBuffer.

SFX supports the buffer protocol much like SoundBuffer; accessing
the object as a buffer generates and caches a sound.

	
base_freq: float

	The initial frequency of the sound

	
freq_limit: float

	The minimum frequency of the sound

	
freq_ramp: float

	The rate of change of the frequency of the sound

	
freq_dramp: float

	The acceleration of the change in frequency of the sound

	
duty: float

	If using square wave, the duty cycle of the waveform

	
duty_ramp: float

	The rate of change of the square wave duty cycle

	
vib_strength: float

	Vibrato strength

	
vib_speed: float

	Vibrato speed

	
vib_delay: float

	Vibrato delay

	
env_attack: float

	The duration of the attack phase of the ADSR envelope

	
env_sustain: float

	The duration of the sustain phase of the ADSR envelope

	
env_decay: float

	The duration of the decay phase of the ADSR envelope

	
env_punch: float

	Causes the volume to decrease during the sustain phase of the envelope

	
lpf_resonance: float

	Low-pass filter resonance

	
lpf_freq: float

	Low-pass filter cutoff frequency

	
lpf_ramp: float

	Low-pass filter cutoff ramp

	
hpf_freq: float

	High-pass filter frequency

	
hpf_ramp: float

	High-pass filter ramp

	
pha_offset: float

	Phaser offset

	
pha_ramp: float

	Phaser ramp

	
repeat_speed: float

	Repeat speed

	
arp_speed: float

	Arpeggio speed

	
arp_mod: float

	Arpeggio mod

	
property wave_type

	Get the wave type.

	
as_dict() → dict

	Get the parameters as a dict.

The dict is suitable for serialising as JSON; to reconstruct the
object, pass the parameters as kwargs to the constructor, eg.

>>> s = SFX(...)
>>> params = s.as_dict()
>>> s2 = SFX(**params)

	
build() → _pyfxr.SoundBuffer

	Get the generated sound (memoised).

	
envelope(attack: float = 0.0, sustain: float = 0.3, decay: float = 0.4, punch: float = 0.0)

	Set the ADSR envelope for this sound effect.

The wave_type of an SFX must be one of these values:

	
class pyfxr.WaveType(value)

	The wave types available for the SFX builder.

Pure tones with tone() use arbitrary wavetables rather than this
enumeration.

	
SQUARE = 0

	A square-wave waveform

	
SAW = 1

	A saw-wave waveform

	
SINE = 2

	A sine wave

	
NOISE = 3

	Random noise

You can also randomly generate those parameters:

	
pyfxr.pickup() → pyfxr.SFX

	Generate a random bell sound, like picking up a coin.

	
pyfxr.laser() → pyfxr.SFX

	Generate a random laser sound.

	
pyfxr.explosion() → pyfxr.SFX

	Generate a random explosion sound.

	
pyfxr.powerup() → pyfxr.SFX

	Generate a random chime, like receiving a power-up.

	
pyfxr.hurt() → pyfxr.SFX

	Generate a random impact sound, like a character being hurt.

	
pyfxr.jump() → pyfxr.SFX

	Generate a random jump sound.

	
pyfxr.select() → pyfxr.SFX

	Generate a random ‘blip’ noise, like selecting an option in a menu.

Wavetable sounds

pyfxr can also generate pure tones using a wavetable. A wavetable gives the
shape of a waveform, such as these:

(Source code, png, hires.png, pdf)

[image: _images/generating-1.png]

Wavetables can have any shape. To construct a Wavetable with a custom shape,
pass an iterable to the constructor. This should return 1024 float values in
[-1, 1].

from math import pi, sin
from pyfxr import Wavetable

def gen():
 for i in range(1024):
 t = pi / 512 * i
 yield 0.75 * sin(t) + 0.25 * sin(3 * t + 0.5)

wt = Wavetable(gen())

Or perhaps more simply, use Wavetable.from_function():

Wavetable.from_function(
 lambda t: 0.75 * sin(t) + 0.25 * sin(3 * t + 0.5)
)

(Source code, png, hires.png, pdf)

[image: _images/generating-2.png]

	
class pyfxr.Wavetable(gen)

	
	
static from_function(f)

	Generate a wavetable by calling a function f.

f should take a single float argument between 0 and tau (pi * 2) and
return values in [-1, 1].

	
static saw()

	Construct a saw waveform.

	
static sine()

	Construct a sine waveform.

	
static square(float duty_cycle=0.5)

	Generate a square-wave waveform.

duty_cycle is the fraction of the period during which the waveform is
greater than zero.

	
static triangle()

	Construct a triangle waveform.

	
pyfxr.tone(pitch: Union[float, str] = 440.0, attack: float = 0.1, decay: float = 0.1, sustain: float = 0.75, release: float = 0.25, wavetable: _pyfxr.Wavetable = <_pyfxr.Wavetable object>) → _pyfxr.SoundBuffer

	Generate a tone using a wavetable.

The tone will be modulated by an ADSR envelope
(attack-decay-sustain-release) which gives the tone a more natural feel,
and avoids clicks when played. The total length of the tone is the sum of
these durations.

	Parameters

	
	wavetable – The wavetable to use (default is a sine wave).

	pitch – The pitch of the tone to generate, either float Hz or a note
name/number like Bb4 for B-flat in the 4th octave.

	attack – Attack time in seconds

	decay – Decay time in seconds

	sustain – Sustain time in seconds

	release – Release time in seconds

ADSR Envelopes

Tones are bounded by a 4-phase “ADSR Envelope”. The phases are:

	Attack - initial increase in volume

	Decay - volume decreases to the sustain level

	Sustain - the volume stays constant while the note is held

	Release - the volume fades to zero

(Source code, png, hires.png, pdf)

[image: _images/generating-3.png]

The default ADSR envelope has this shape. Note that durations for any of the
ADSR phases can be set to zero to omit that phase. It is recommended to skip
only decay and sustain phases, as attack and release phases help to avoid
clicks when the sound plays.

This is applied to a waveform by multiplication:

(Source code, png, hires.png, pdf)

[image: _images/generating-4.png]

Pluck sounds

pyfxr can also generate pluck sounds, like a guitar or harp.

	
pyfxr.pluck()

	pluck(float duration, float pitch, float release=0.1)
Generate a pluck sound using the Karplus-Strong algorithm.

Composing tools

	
pyfxr.chord(sounds: u'List[Union[SoundBuffer, SFX]]', double stagger=0.0) → SoundBuffer

	Generate a chord by combining several sounds.

If stagger is given, the start of each additional sound will be delayed
by stagger seconds.

	
pyfxr.simple_chord(name: str, attack: float = 0.1, decay: float = 0.1, sustain: float = 0.75, release: float = 0.25, wavetable: _pyfxr.Wavetable = <_pyfxr.Wavetable object>, stagger: float = 0.0) → _pyfxr.SoundBuffer

	Construct a chord using a chord name like

	C - major chord in C

	Bbm or Bb- - minor chord in B-flat

	D7 - dominant 7th

etc.

Other parameters are as for tone() and :func:`chord.

Using Soundbuffer objects

pyfxr’s sound generation APIs return SoundBuffer
and SFX objects.

A soundbuffer is a packed sequence of 16-bit samples:

>>> buf = pyfxr.explosion().build()
>>> len(buf)
32767
>>> buf[0]
2418

but more importantly it supports the buffer protocol, which allows it to be
passed directly to many sound playing APIs (see below).

You can also save a SoundBuffer to a .wav file, which is very widely
supported:

buf.save("explosion1.wav")

An SFX object is a set of parameters to generate a SoundBuffer. You can
generate and retrieve the SoundBuffer with SFX.build(), but you can
also play an SFX just like a SoundBuffer.

	
class pyfxr.SoundBuffer

	
	
sample_rate: int

	The sample rate in samples per second. Currently, always 44100.

	
channels: int

	The number of channels in the sample. Currently, always 1 (mono).

	
duration

	Get the duration of this sound in seconds, as a float.

	
get_queue_source(self)

	Duck type as a pyglet.media.Source.

	
save(self, unicode filename: str)

	Save this sound to a .wav file.

With Pygame

Pygame [https://www.pygame.org/] can construct a sound from any buffer object, including SoundBuffer:

buf = pyfxr.tone()
pygame.mixer.Sound(buffer=buf)

Be aware that as of Pygame 2.0.1, Sound objects do not have their own
sample rate and mono/stereo information; they are assumed to have the same
format as the mixer. For correct playback you must initialise the mixer to
44100 kHz mono:

pygame.mixer.pre_init(pyfxr.SAMPLE_RATE, channels=1)
pygame.mixer.init()

With Pyglet

SoundBuffers can also be used as Pyglet [https://pyglet.readthedocs.io/] media sources:

pyglet.media.StaticSource(buf)

This does not work by the buffer protocol; SoundBuffer has special adapter
code to allow it to work like this.

With sounddevice

sounddevice [https://python-sounddevice.readthedocs.io/] provides access to sound devices, without being coupled to a game
or UI framework.

sounddevice also supports the buffer protocol and can play SoundBuffers
directly:

import sounddevice
import pyfxr

sounddevice.play(pyfxr.jump(), pyfxr.SAMPLE_RATE)

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | J
 | L
 | N
 | P
 | R
 | S
 | T
 | V
 | W

A

 	
 	arp_mod (pyfxr.SFX attribute)

 	
 	arp_speed (pyfxr.SFX attribute)

 	as_dict() (pyfxr.SFX method)

B

 	
 	base_freq (pyfxr.SFX attribute)

 	
 	build() (pyfxr.SFX method)

C

 	
 	chord() (in module pyfxr)

D

 	
 	duration (pyfxr.SoundBuffer attribute)

 	
 	duty (pyfxr.SFX attribute)

 	duty_ramp (pyfxr.SFX attribute)

E

 	
 	env_attack (pyfxr.SFX attribute)

 	env_decay (pyfxr.SFX attribute)

 	env_punch (pyfxr.SFX attribute)

 	
 	env_sustain (pyfxr.SFX attribute)

 	envelope() (pyfxr.SFX method)

 	explosion() (in module pyfxr)

F

 	
 	freq_dramp (pyfxr.SFX attribute)

 	freq_limit (pyfxr.SFX attribute)

 	
 	freq_ramp (pyfxr.SFX attribute)

 	from_function() (pyfxr.Wavetable static method)

G

 	
 	get_queue_source() (pyfxr.SoundBuffer method)

H

 	
 	hpf_freq (pyfxr.SFX attribute)

 	
 	hpf_ramp (pyfxr.SFX attribute)

 	hurt() (in module pyfxr)

J

 	
 	jump() (in module pyfxr)

L

 	
 	laser() (in module pyfxr)

 	lpf_freq (pyfxr.SFX attribute)

 	
 	lpf_ramp (pyfxr.SFX attribute)

 	lpf_resonance (pyfxr.SFX attribute)

N

 	
 	NOISE (pyfxr.WaveType attribute)

P

 	
 	pha_offset (pyfxr.SFX attribute)

 	pha_ramp (pyfxr.SFX attribute)

 	
 	pickup() (in module pyfxr)

 	pluck() (in module pyfxr)

 	powerup() (in module pyfxr)

R

 	
 	repeat_speed (pyfxr.SFX attribute)

S

 	
 	save() (pyfxr.SoundBuffer method)

 	SAW (pyfxr.WaveType attribute)

 	saw() (pyfxr.Wavetable static method)

 	select() (in module pyfxr)

 	SFX (class in pyfxr)

 	
 	simple_chord() (in module pyfxr)

 	SINE (pyfxr.WaveType attribute)

 	sine() (pyfxr.Wavetable static method)

 	SoundBuffer (class in pyfxr)

 	SQUARE (pyfxr.WaveType attribute)

 	square() (pyfxr.Wavetable static method)

T

 	
 	tone() (in module pyfxr)

 	
 	triangle() (pyfxr.Wavetable static method)

V

 	
 	vib_delay (pyfxr.SFX attribute)

 	
 	vib_speed (pyfxr.SFX attribute)

 	vib_strength (pyfxr.SFX attribute)

W

 	
 	wave_type() (pyfxr.SFX property)

 	
 	Wavetable (class in pyfxr)

 	WaveType (class in pyfxr)

 nav.xhtml

 Table of Contents

 		
 pyfxr - a simple synth for games

 		
 Generating sounds

 		
 sfxr-style sounds

 		
 Wavetable sounds

 		
 ADSR Envelopes

 		
 Pluck sounds

 		
 Composing tools

 		
 Using Soundbuffer objects

 		
 With Pygame

 		
 With Pyglet

 		
 With sounddevice

_static/file.png

_static/fxr.png
Fi=ztones F2=sfx
/Square | |Saw [ISine /e Noise
=
base_freq: 0.23 vib_delay: 0.0 hpf_freq: 0.0
[Cowmm]
[munt | freq limit:00 env_attack: 0.0 hpf_ramp: 0.0
[bme]
freq_ramp: 017 env_sustain:022 pha_ofiset: 0.0
CEm]
| powerup | freq dramp:00 env_decay: 0.4 pha_ramp: 0.0
—_—
e)
duty: 0.0 env_punch:032 repeat speed:0.0
[
duty_ramp: 0.0 Ipf_resonance:0.0 arp_speed: 0.0
B e
vib_strength:0.46 Ipf_freq: 1.0 arp_mod: 0.0
vib_speed: 015 Ipf_ramp: 0.0

_static/plus.png

_static/keyboard.png
]

I

_static/minus.png

_images/generating-3.png
10

08

06

04

02

00

[

10000

20000

30000

40000

0000

_images/generating-4.png
30000

20000

10000

10000

20000

30000

o

10000

20000

30000

40000

50000

_images/generating-1.png
20000

20000

20000

20000

sine square
20000
o
~Roooo
0 200 40 0 @0 1000 20 400 e0 @0 1000
Triangle saw
20000
o
~Roooo
0 200 40 0 @0 1000 20 400 e0 @0 1000

_images/generating-2.png
20000

10000

10000

20000

200

00

00

1000

